Course Code	Credit Hours (Th-Pr) 3-0	Biofuel Engineering (core)	Contact Hrs/Week (Th)	Total Contact Hrs (Th)
ESE-801			3-0	45-0

Course Outline:

Process Dynamics & Machinery Biodiesel Technologies & Regulatory Issues Biodiesel Process Analysis Ethanol Process Fundamentals Ethanol Separation Technology

<u>Eligibility Criteria:</u> B.E (Chemical, Mechanical, Electrical, Environmental and Materials)

Recommended Books:

S.	Title	Author(s)	Assigned	Remarks
No.			Code	
1.	Biofuels Engineering	Caye M. Dramcho,	СМ	Text
	Process Technology	Nighiem Phu Nhuan, Terry		
		H. Walker		
2.	Chemical Process	Harry Sila	HC	Referenc
	Engineering Design and			е
	Economics			
3.	Standard Hand book for	George F. Baumiester	GF	Referenc
	mechanical Engineering			е

Course Objectives:

The primary objectives of this course are to familiarize students with practical applications of the principles of Bio-fuel processes and engineering pertaining to production of biofuels i.e. Biodiesel and Ethanol.

Learning outcome:

The course will provide an intense treatment in bio-fuel production technologies, the students will be able to appreciate the design concepts of plant & machinery involved in the production chain i-e Crude production, bio-refining and characterization.

Topics Covered:

No.	Topics	Text	Contact
		Book	Hours
1.	Process Machinery: This course will provide knowledge of	СМ	6
	machinery commonly found in a process facility such as	+GF	
	pumps, valves, heat exchangers, cooling towers,		
	centrifuges, compressors, thermal oxidizers, distillation		
	towers, compressors, refrigeration principles and boiler		
	systems. Startup, shutdown, operation and troubleshooting		
	of each of these mechanical systems will be explained.		
2.	Instrumentation and Control: .Study in details P& ID	СМ	6
	terminologies with applied applications. PFDs will be used to		
	examine the sequence of operation, including residence		
	time, pressures, and temperature seen in various stages of		
	production.		

3.	Process Dynamics: Cover in details about major chemical	CM+H	6
	process separations units, apply appropriate criteria for	С	
	selecting among alternative separation technologies.		
	Complete design calculations for equilibrium staged		
	separation processes(e.g distillation, absorption, solvent		
	extraction). Applying mass transfer fundamentals to		
	calculate rates of mass transfer for practical situations and		
	to identify rate limiting processes.		
4.	Biodiesel Technologies and Regulatory Issues:	СМ	6
	Investigates the underlying research and reaction processes		
	that are used to produce biodiesel. Studying feedstock		
	options coupled with past and present technologies provides		

	foundational knowledge about the industry. The course		
	includes an in-depth review of the ASTM Standards for		
	biodiesel and the regularity issues that can arise from non		
	compliance.		
5.	Biodiesel Processes Analysis: Provides detailed	СМ	6
	information regarding the overall process of biodiesel		
	production. The course will include a review of biodiesel		
	chemistry, process engineering, post reaction processing,		
	fuel specification and properties, feedstock preparation,		
	treatment and recovery of side streams, fuel transportation		
	storage and general plant operations.		
6.	Ethanol Process and Separation Technology: Covers in	СМ	8
	detail the overall fundamentals process of ethanol		
	production. A process flow Diagram (PFD) of a typical		
	ethanol plant will be used to examine the sequence of		
	operation, including residence time, pressures, and the		
	temperatures seen in various stages of production. This		
	course will explain the rationale for feedstock and additives		
	used in ethanol processing as well as product and co-		
	product production and use. Covers the basic principles of		
	ethanol distillation, evaporation, and dehydration. Included		
	will be an understanding of the operating components in a		
	distillation system ;demonstrable familiarity with startup,		
	cleaning operating, and shutdown procedures; and the		
	ability and its role in processing plants will also be converted		
	as well as the theory of the molecular sieve dehydration and		
	how it is used in the ethanol process.		
7.	Reaction Kinetics and Reactor Design: Covers in details	CM+	7
	the kinetic data, determination of rate laws, analysis of	HC	
	complex reaction networks and design of ideal isothermal		
	reactors Analyze data for heterogeneous catalytic		
	reactions. Design reactor systems for given synthesis with		
	special emphasis on trans-esterification and biofermentation		

Bio fuel Engineering experiments for thesis:	
 Perform an experiment using NaOH and KOH as a 	
catalyst with ethanol & methanol separately.	
 Assignment: Write the mass balance of a continuous 	
transesterification process for production of crude	
biodiesel from 250,000 kg/h rapeseed oil reacted with	
75,000 kg/h ethanol and 250 kg/h potassium	
hydroxide with 1 h residence time. Determine the	
production yield of biodiesel assuming 95 percent	
conversion rate making use of:	
a. Microsoft Excel or similar spreadsheet to compute	
the mass balance for each stream.	
 Separation of bio diesel and its bio products with the 	
help of oil test centrifuge	
 Calculate the % age of the water contents in the bio 	
diesel sample	
Observe the flash point of bio diesel prepared in the	
lab using Flash point apparatus.	
Characterization of bio diesel (GC, HPLC, Bomb	
calorimeter, cetane no, viscosity, sulphur & carbon	
residues etc)	